Journal of Organometallic Chemistry, 111 (1976) 241–248 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

ORGANOPLATINUM COMPOUNDS

II *. REDUCTIVE ELIMINATION OF CH₃N₃ FROM [Me₃PtN₃]₄ WITH P(OMe)₃ YIELDING *cis*-Me₂Pt[P(OMe)₃]₂

BORIS NERUDA and JORG LÖRBERTH **

Fachbereich Chemie der Philipps-Universität Marburg, D-3550 Marburg/Lahn, Lahnberge (Deutschland)

(Received December 2nd, 1975)

Summary

Reaction of $[Me_3PtN_3]_4$ with pure $P(OMe)_3$ yields cis-Me₂Pt $[P(OMe)_3]_2$ with reductive elimination of CH_3N_3 . IR/Raman and mass spectra of the compound have been obtained and metal-to-ligand vibrations $\nu(Pt-C)$ and $\nu(Pt-P)$ have been assigned. Cis-Me₂Pt $[P(OMe)_3]_2$ was independently synthesized by two different routes: (a) cis-Cl₂Pt $[P(OMe)_3]_2$ was treated with MeLi, (b) Me₂PtCOD (COD = cyclooctadiene) was substituted with $P(OMe)_3$.

Results and discussion

Trimethylplatinum(IV) azide has been reported as an example of a covalent organoplatinum(IV)—nitrogen compound [1]; it has been recognized as a tetramer $[Me_3PtN_3]_4$ by its mass spectrum, and X-ray analysis has confirmed a distorted "cubic structure" with the unique feature of an azide group where the α -nitrogen atom is coordinated to three platinum atoms [2].

Covalent organometallic azides react with phosphines in a "Staudinger reaction" with elimination of nitrogen, forming organometallic phosphineimines (eq. 1).

$$L_nM-N_3 + PR_3 \xrightarrow{T} L_nM-N=PR_3 + N_2$$

To extend our knowledge of covalently-bonded platinum nitrogen compounds and in pursuit of our studies on structural aspects of organoplatinum chemistry,

(1)

we undertook an experiment analogous to eq. 1 (eq. 2).

242

$Me_{3}PtN_{3} + PR_{3} \xrightarrow{T} \# Me_{3}Pt - N = PR_{3} + N_{2}$ (2)

With $P(NMe_2)_3$, a strong basic phosphine, no reaction of that type takes place, but a volatile adduct, $Me_3PtN_3 \cdot 4 P(NMe_2)_3$, b.p. $170^{\circ}C/10^{-3}$ Torr, is formed [3]. However, with $P(OMe)_3$ a vigorous exothermic reaction is observed * (eq. 3).

$$Me_{3}PtN_{3} \xrightarrow{excess P(OMe)_{3}} Me_{2}Pt[P(OMe)_{3}]_{2} + N_{2} + CH_{3}N = P(OMe)_{3}$$
(3)
(I)

 $Me_2Pt[P(OMe)_3]_2$ (I) is a colourless, air-stable compound which has been fully characterized by elemental and spectroscopic analyses.

Reductive elimination is a well-known reaction in organo-platinum chemistry [4], e.g. pyrolysis of platinum(IV) compounds yields platinum(II) complexes (eq. 4).

$(CH_{3})Cl_{3}Pt^{IV}[PR_{3}]_{2} \xrightarrow{T} Cl_{2}Pt^{II}[PR_{3}]_{2} + CH_{3}Cl$ (4)

Elimination of RX involves no free radicals or other high-energy intermediates, therefore reactions are rationalized by all electron-pair processes. The nature of the leaving group RX seems to play an important rôle. Standard heats of formation $\Delta H_{\rm f}^0$ (RX) may be taken as the primary parameter-directing reaction paths (eq. 5).

$$R_{3}PtX \xrightarrow{+2L}_{-2L} R_{2}PtL_{2} + RX$$
(5)

e.g. ΔH_f^0 (CH₃Cl)_g = -82 kJ/mol, ΔH_f^0 (CH₃Br)_g = -36 kJ/mol and ΔH_f^0 (CH₃J)_g = +20 kJ/mol.

We have tried to synthesize I by treatment of $Cl_2Pt[P(OMe)_3]_2$ (assumed to have the *cis*-structure [5]) with CH_3Li prepared from CH_3I and lithium metal, which resulted in halogen—ligand exchange and formation of unidentified products.

Successful preparation of I was carried out by using iodide-free CH_3Li/Et_2O solutions under reaction conditions earlier described by Chatt and Shaw [6] for *cis*-Me₂Pt[PEt₃]₂ (eq. 6).

$$cis-Cl_2Pt[P(OMe)_3]_2 + 2 \text{ MeLi} \xrightarrow{Et_2O}_{-20^{\circ}C} 2 \text{ LiCl} + cis-Me_2Pt[P(OMe)_3]_2$$
(6)

(I)

Independently I may be obtained in a ligand-substitution process from Me_2PtCOD with $P(OMe)_3$:

^{*} Caution! Adding P(OMe)₃ to a solid sample of [Me₃PtN₃]₄ caused a violent explosion, presumably due to metastable CH₃N₃ formed by reductive elimination; [Me₃PtN₃]₄ is also known to be explosive when exposed to heat [1].

Me₂PtCOD + 2 P(OMe)₃ $\frac{Et_2O}{RT}$ cis-Me₂Pt[P(OMe)₃]₂ + COD

No attempt has been reported for the preparation of a potentially useful precursor of possible cis-Me₂PtL₂ derivatives, e.g. cis-Me₂Pt[C₆H₅CN]₂; our experiments failed due to reaction of CH₃Li with the benzonitrile ligand:

243

(7)

(8)

(cis?)-Cl₂Pt[C₆H₅CN]₂ + 2 MeLi $\xrightarrow{\text{Et}_2 O}$ 2 LiCl + dec. products

Reactions 3, 6 and 7 yield exclusively the *cis*-complex Me₂Pt^{II}[P(OMe)₃]₂; in the literature no starting materials *trans*- X_2 Pt^{II}[PR₃]₂ and no *trans*-Me₂Pt^{II}[PR₃]₂ have been quoted so far [7].

Mass spectra

Spectra of compound I, as synthesized in eq. 3, 6 and 7, were scanned at 70 and 20 eV electron energy with a direct insertion probe; they show no significant differences in their fragmentation patterns (Table 1). The low-mass region of the spectrum is dominated by fragment products of the phosphite ligands, as reported by Braterman [8,9]. In addition, hydrogen and methyl radicals combine with $P(OMe)_3$ to form $[HP(OMe)_3]^+$ at m/e 125 and $[MeP(OMe)_3]^+$ at m/e 139.

In contrast to many organometallics $(Me)_n MX_m$ no alkyl platinum fragments and/or platinum ions Pt⁺, MePt⁺ or Me₂Pt⁺ are observed in the mass spectra of $R_3Pt^{IV}X$ or related derivatives [1,10] and the same applies to $R_2Pt^{II}L_2$ complexes [11]; for Me₂Pt[P(OMe)₃]₂ only [PtC₂H₃]⁺ appears with relatively low abundance in the appropriate mass region.

For most ions from m/e 288–458 many alternative structures may be written; the structure of distinct ions and a fragmentation scheme cannot be formulated unambiguously, but among the many structures suggested each seems to be logically derived from Me₂PtL₂ by stepwise fragmentation of both metal-tocarbon and metal-to-ligand sites. The molecular ion appears with only 3% relative abundance, typical for a ligand-stabilized peralkylated platinum(II) complex [11]; in contrast, the $(m - 15)^+$ ion abundance is close to 100% of the base peak.

NMR spectra

High and low resolution [¹H, ¹³C, ³¹P] NMR spectra confirm the structure of cis-Me₂Pt[P(OMe)₃]₂; a detailed analysis of the spectra will appear in a following communication [12].

IR/Raman spectra

Vibrational spectroscopy and measurement of the molecular dipole moment has been widely used to determine *cis*- and *trans*-configurations of square-planar complexes $[X_2Pt^{II}L_2]$; as required by symmetry only one $\nu(Pt-X)$ band was found in the spectra of the *trans*-, and two absorptions $\nu(Pt-X)$ in the spectra of the *cis*-complexes [13].

From $3000-750 \text{ cm}^{-1}$ IR and Raman spectra show absorptions due to vibrations of the phosphite ligands and of the metal-bonded methyl groups; assignment of P(OCH₃)₃-group frequencies in Table 2 is facilitated by comparing the similar spectra of (CH₃O)₃P=O [14] and of (CH₃O)₃PNCH₃ [15].

Platinum—carbon stretching frequencies, $\nu(Pt-C)$, in various complexes have been observed as doublets in *cis*-complexes from 523/536 to 534/545 cm⁻¹, but obviously no *trans*-Me₂PtL₂ derivative has been investigated spectroscopically [16]. We assign $\nu(Pt-C)$ from 560—520 cm⁻¹ at higher frequencies than in the

TABLE 1 (see also Fig. 1).

MASS SPECTRUM OF Me2Pt[P(OMe)3]2, 70 eV/60°C, PEAKS >3% ONLY

Abundance	m/e	Assignment								
11.2	63	HPOMe ⁺								
6.4	79	HP(O)OMe ⁺								
79.3	93	P(OMe) ₂ ⁺								
4.7	94	$HP(OMe)_2^+$								
8.6	109	P(O)(OMe)2 ⁺								
9.2	123	P(OMe)2OCH2 ⁺								
4.1	124	P(OMe) ₃ ⁺								
8.9	125	HP(OMe)3 ⁺								
100.0	139	$MeP(OMe)_3^+ = base peak$								
3.3	222	$PtC_2H_3^+$								
4.8	258	Pt(HPOMe) ⁺								
4.0	273	MePt(HPOMe) ⁺								
23.2	288	PtP(OMe)2 ⁺ /Me2Pt(HPOMe) ⁺								
16.2	289	PtHP(OMe)2 ⁺ /MePtHP(O)OMe ⁺								
14.0	318	Me ₂ PtHP(OMe) ₂ ⁺								
15.2	319	PtP(OMe) ₃ ⁺ /MePtP(O)(OMe) ₂ ⁺ /Me ₂ PtHP(OMe) ₂ ⁺								
5.2	321	Pt(HPOMe)2 ⁺								
33.0	334	MePtP(OMe)3 ⁺ /Me ₂ PtP(O)(OMe)2 ⁺								
4.2	337	Pt(HPOMe)(HP(O)OMe) ⁺ /MePtH(HPOMe) ⁺								
5.3	397	PtP(OMe), P(O)(OMe), +/MePtP(OMe), PH(OMe), +/								
		MePtP(OMe)3HPOMe ⁺ /Me2PtHPOMeP(O)(OMe)2 ⁺								
4.7	398	PtHP(OMe),P(O)(OMe),+/PtHP(O)OMeP(OMe),+/								
		MePt[HP(OMe)2]2 ⁺ /MePtHP(O)OMeP(O)(OMe)2 ⁺ /								
		Me ₂ PtHP(O)OMeHP(OMe) ₂ ⁺								
4.7	411	Me ₂ Pt[P(OMe) ₂] ₂ ⁺								
8.0	412	$PtP(OMe)_{2}P(OMe)_{3}^{+}/MePtP(OMe)_{2}P(O)(OMe)_{2}^{+}/$								
		Me ₂ PtP(OMe) ₂ PH(OMe) ₂ ⁺ /Me ₂ PtHPOMeP(OMe) ₃ ⁺								
6.9	413	Pt[P(O)(OMe)2]2+/PtHP(OMe)2P(OMe)3+/								
and the state of the		MePtHP(O)OMeP(OMe)3 ⁺ /MePtHP(OMe)2P(O)(OMe)2 ⁺ /								
1	· · · · · · · · · · · · · · · · · · ·	Me ₂ Pt[HP(OMe) ₂] ₂ ⁺ /Me ₂ PtHP(O)OMeP(O)(OMe) ₂ ⁺								
9.9	427	MePtP(OMe) ₂ P(OMe) ₃ ⁺ /Me ₂ PtP(OMe) ₂ P(O)(OMe) ₂ ⁺								
7.1	428	PtP(O)(OMe) ₂ P(OMe) ₃ ⁺ /MePt[P(O)(OMe) ₂] ₂ ⁺ /								
1		MePtHP(OMe) ₂ P(OMe) ₃ ⁺ /Me ₂ PtHP(OMe) ₂ P(O)(OMe) ₂ ⁺ /								
		Me ₂ PtHP(O)OMeP(OMe) ₃ ⁺								
10.1	442	Me ₂ PtP(OMe) ₂ P(OMe) ₃ ⁺								
9.6	443	Pt[P(OMe) ₃] ₂ ⁺ /MePtP(O)(OMe) ₂ P(OMe) ₃ ⁺ /								
		Me ₂ Pt[P(O)(OMe) ₂] ₂ ⁺ /Me ₂ PtHP(OMe) ₂ P(OMe) ₃ ⁺								
94.9	457	MePtP(OMe) ₂ OCH ₂ P(OMe) ₃ ⁺ /Me ₂ PtP(O)OMeOCH ₂ P(OMe) ₃ ⁺								
92.3	458	MePt[P(OMe) ₃] ₂ ⁺ /Me ₂ PtP(O)(OMe) ₂ P(OMe) ₃ ⁺								
3.2	473	$Me_2Pt[P(OMe)_3]_2^+ = molecular ion$								

244

TABLE 2 (see also Fig. 2)

IR/RAMAN SPECTRA OF cis-Me₂Pt[P(OMe)₃]₂; [cm⁻¹]

Assignment	IR	Raman							-		
,	(3000(sh)	3020(sh)	 								2
	2950s	2960s									
$\nu_{\rm s}, \nu_{\rm as}(\rm CH_3), (\rm OCH_3)$	{ 2880m	2860m									
	2840m	2850m									
	2820(sh)	2820(sh)									
δ _{as} (OCH ₃)	1460w(sh)	1465(sh)									۰.
$\delta_{as}(CH_3)$	1450m	1445w									•
—	1260w										
δ _s (CH ₃)		1215s									
C (OIT)	∫ 1195m	1195s									
os(CH3)	^l 1188m				· .					•	
	∫ 1080sh	1075vw									۰.,
ν(OCH ₃), ρ(OCH ₃)	{ 1060(sh)	1060vw									
	1020vs	1015m									
δ _s (CH ₃)	1005vs	1000m									
$\nu_{as}(PO_3)$	800s	815s					· ·				- 1
ρ(CH ₃)	780vs	788m		•			· ·				
		775s	÷.		1					1.1	
ν _s (PO) ₃	745vs	750s							•	•	
v(PtC)	{ 560m	552m-s						•	· · · · ·		1
	540s	522vs	 •	• •		·					
δ(PO ₃)	520m	515s						. 1			
$\nu_{as}(Pt-P_2)$	450w	440vw		÷.						14 C.	i e
δ(POC?)	-385w	390m			1.1	· . ·		ana Na sa			÷.,
ν _s (PtP ₂)	305vw	290m							. t. 14	- 1	ала 1917 — П
		250m						· · ·		· • .	

corresponding alkylarylphosphine complexes, indicating a higher bond strength in the metal-to-carbon bond. In the Raman effect $\nu(Pt-C)$ vibrations are by far the most intense peaks in the whole spectrum characteristic for covalentlybonded alkylmetal groups.

Platinum phosphorous stretching frequencies, $\nu(\text{Pt}-\text{P}_2)$, are quoted in the literature for *cis*-complexes as doublets from 440/425 to 420/406 cm⁻¹ depending on the nature of the phosphine ligand [17], in *cis*-Me₂Pt[P(OMe)₃]₂ $\nu(\text{Pt}-\text{P}_2)$ is found from 450 to 390 cm⁻¹.

Experimental

1. Spectra and analyses

All compounds have been fully characterized by IR/Raman, NMR (¹H, ³¹P, ¹³C) and mass spectroscopy. The spectroscopic equipment has been described in an earlier communication [1].

Elemental analyses have been performed by A. Bernhardt, Analytical Laboratory, Elbach über Engelskirchen, West Germany, and the analytical facilities of the Fachbereich Chemie, Philipps-Universität, Marburg.

Molecular weights were determined cryoscopically in benzene solution or by mass spectroscopy.

2. Starting materials

 $[Me_3PtN_3]_4$ [1], cis-Cl₂Pt[C₆H₅CN]₂[5], cis-Cl₂Pt[P(OMe)₃]₂ [5] and Me₂PtCOD [18] were prepared according to standard literature procedures. P(OMe)₃ was commercially available and distilled before use: b.p. $110-112^{\circ}C/760 \text{ mm}$ Hg. Methyllithium was prepared from CH₃Cl and lithium in dry ether at $-10^{\circ}C$ under nitrogen.

3. Preparation of cis-Me₂Pt[P(OMe)₃]₂

(a) $Me_3PtN_3 + P(OMe)_3$. 25 ml P(OMe)₃ are vigorously stirred and 4.6 g (16.3 mmol) Me_3PtN_3 are added in small portions over a period of 30 min; the compound reacts exothermally with evolution of nitrogen (See Caution Note!) After addition of the last portion stirring is continued unless the solution becomes clear. To complete the reaction the mixture is refluxed for 30 min; minor amounts of platinum metal are formed. Excess P(OMe)₃ is removed in vacuo, the oily residue is fractionally distilled: *cis*-Me₂Pt[P(OMe)₃]₂ is obtained as white, crystalline solid, b.p. 140–150°C/0.01 mm Hg; m.p. 60–62°C (uncorr.). Isolated yield: 3.7 g (48%). The compound is stable to air and hydrolysis. Found: C, 20.39; H, 5.19; O, 20.00; P, 12.78; Pt, 40.80. C₈H₂₄P₂O₆Pt calcd.: C, 20.30; H, 5.11; O, 20.28; P, 13.09; Pt, 41.22%. Mol. weight: Found: 520, 530; (benzene); calcd.: 473.

(b) cis-Cl₂Pt[P(OMe)₃]₂ + CH₃Li. 50 ml of a 0.43 molar CH₃Li/Et₂O-solution (10.38 mmol) are added dropwise to a stirred suspension of 2.67 g (5.18 mmol) cis-Cl₂Pt[P(OMe)₃]₂ in 100 ml dry ether, cooled at -20° C. Reaction proceeds with formation of finely crystallized LiCl during 1 h. The mixture is allowed to warm up to room temperature and is quickly hydrolyzed with 50 ml H₂O; small amounts of platinum metal are formed. The ether layer is dried with CaCl₂, filtered, and the solvent evaporated in vacuo (crude yield: 1.66 g/67%). The browncoloured product is dissolved in a minimum of hot CH₃OH, refluxed with charcoal, filtered, and H₂O added dropwise to the hot solution until precipitation occurs. After 24 h at -22° C cis-Me₂Pt[P(OMe)₃]₂ is crystallized in beautiful long, white needles, m.p. 60–62°C (uncorr.). Isolated yield: 1.02 g (42%). Found: C, 22.09; H, 5.29; P, 12.46; Pt, 40.30. C₈H₂₄O₆P₂Pt calcd.: C, 20.30; H, 5.11; P, 13.09; Pt, 41.22%.

(c) $Me_2PtCOD + P(OMe)_3$. 2.82 ml (23.9 mmol) $P(OMe)_3$ are added dropwise to 3.98 g (11.9 mmol) Me_2PtCOD suspended in 50 ml acetone (15 min). The reaction is slightly exothermic; small amounts of platinum metal are filtered off and all volatiles are removed in vacuo. The residue crystallizes over night and is purified by vacuum distillation (see above). Isolated yield: 2.0 g (35%); colourless needles, m.p. 57–60°C (uncorr.). Found: C, 20.52; H, 4.85. $C_8H_{24}P_2O_6Pt$ calcd.: C, 20.30; H, 5.11%.

Acknowledgement

Experiments were financed by the Fachbereich Chemie, Philipps-Universität, Marburg/Lahn, West Germany. Our work was supported by the Fonds der Chemischen Industrie e.V. (for J.L.) and the Deutsche Forschungsgemeinschaft (for B.N.) whose generosity is gratefully acknowledged.

References

1 K.H. von Dahlen and J. Lorberth, J. Organometal. Chem., 65 (1974) 267.

2 M. Atam and U. Müller, J. Organometal. Chem., 71 (1974) 435.

- 3 B. Neruda and J. Lorberth, unpublished results.
- 4 J.D. Ruddick and B.L. Shaw, J. Chem. Soc. (A), (1969) 2969.
 - 5 M.J. Church and M.J. Mays, J. Inorg. Nucl. Chem., 33 (1971) 253.
 - 6 J. Chatt and B.L. Shaw, J. Chem. Soc. (A), (1959) 705.
 - 7 J.D. Ruddick and B.L. Shaw, J. Chem. Soc. (A), (1969) 2801.
- 8 D.A. Bafus, E.J. Gallegos and R.W. Kiser, J. Phys. Chem., 70 (1966) 2614.
- 9 P.S. Braterman, J. Organometal. Chem., 11 (1968) 198.
- 10 K.W. Egger, J. Organometal. Chem., 24 (1970) 501.
- 11 F. Glockling, T. McBride and R.J.I. Pollock, Inorg. Chim. Acta, 8 (1974) 81.
- 12 G. Hägele, B. Neruda and J. Lorberth, unpublished results.
- 13 D.M. Adams, J. Chatt, J. Gerratt and A.D. Westland, J. Chem. Soc. (A), (1964) 734.
- 14 O. Aboul Wafa, A. Lenz and J. Goubeau, Z. Anorg. Allg. Chem., 380 (1971) 128.
- 15 P. Haasemann and J. Goubeau, Z. Anorg. Allg. Chem., 408 (1974) 293.
- 16 J.D. Ruddick and B.L. Shaw, J. Chem. Soc. (A), (1969) 2964.
- 17 F. Glockling and K.A. Hooton, J. Chem. Soc. (A), (1967) 1066.
- 18 H.C. Clark and L.E. Manzer, J. Organometal. Chem., 59 (1973) 411.